Buoyant Convection Computed in a Vorticity, Stream-Function Formulation

نویسندگان

  • Ronald G. Rehm
  • Howard R. Baum
چکیده

Model equations describing large scale buoyant convection in an enclosure are formulated with the vorticity and stream function as dependent variables. The mathematical model, based on earlier work of the authors, is unique in two respects. First, it neglects viscous and thermal conductivity effects. Second the fluid is taken to be thermally expandable: large density variations are allowed while acoustic waves are filtered out. A volumetric heat source of specified spatial and temporal variation drives the flow in a two-dimensional rectangular enclosure. An algorithm for solution of the equations in this voticity, stream-function formulation is presented. Results of computations using this algorithm are presented. Comparison of these results with those obtained earlier by the authors using a finite difference code to integrate the primitive equations show excelent agreement. A method for periodically smoothing the computational results during a calculation, using Lanczos smoothing, is also presented. Computations with smoothing at different time intervals are presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Inviscid flows over a cylinder

In this paper, we simulate steady inviscid flows over a cylinder using potential and stream functions, including entropy and vorticity corrections for incompressible, subsonic, transonic and supersonic flows. The present hierarchical formulation is equivalent to Euler equations satisfying conservation of mass, momentum and energy. Standard numerical schemes and iterative algorithms are used for...

متن کامل

Numerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder

Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation

In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010